In-situ management The "other" approach to remediating contaminated sediments

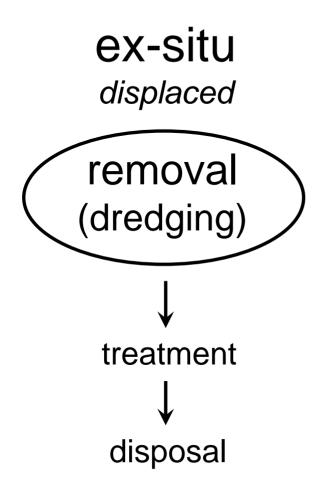
SAO Environmental Consulting AB

1

Managing (remediating) contaminated sediments

Reason

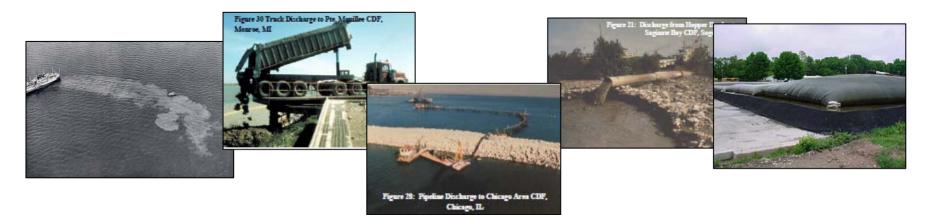
Contamination poses unacceptable risks to ecological and/or human receptors, risks that need to be "managed" in some way


Goal

Reduce risks to acceptable levels (& maintain)

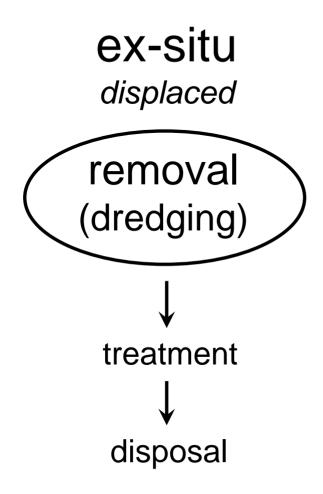
2

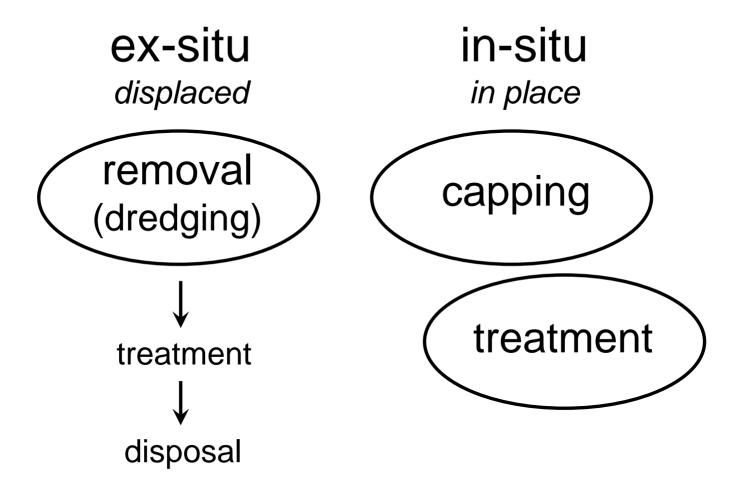
Approaches to sediment remediation


3

Removal, treatment and disposal

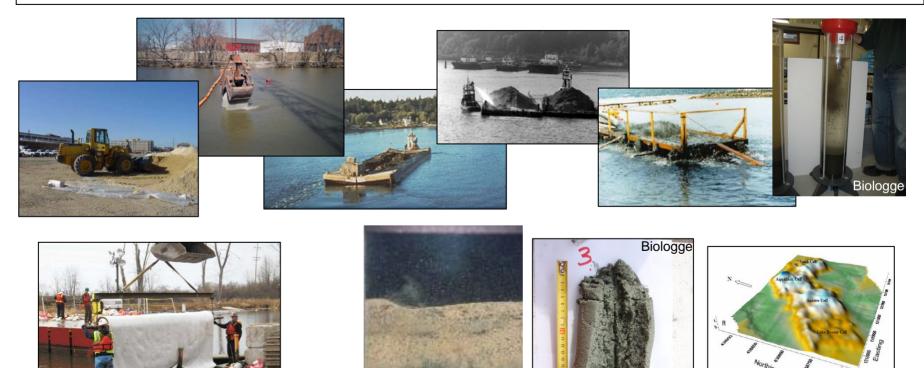
Description


Removing contaminated sediment by dredging or excavation, followed by transport and disposal (with/without pre-treatment of sediment and/or water phases)


Approaches to sediment remediation

5

Approaches to sediment remediation



6

In-situ capping

Description

Placing clean, conventional or innovative material of different thicknesses overtop contaminated sediment for the purpose of meeting performance objective(s)

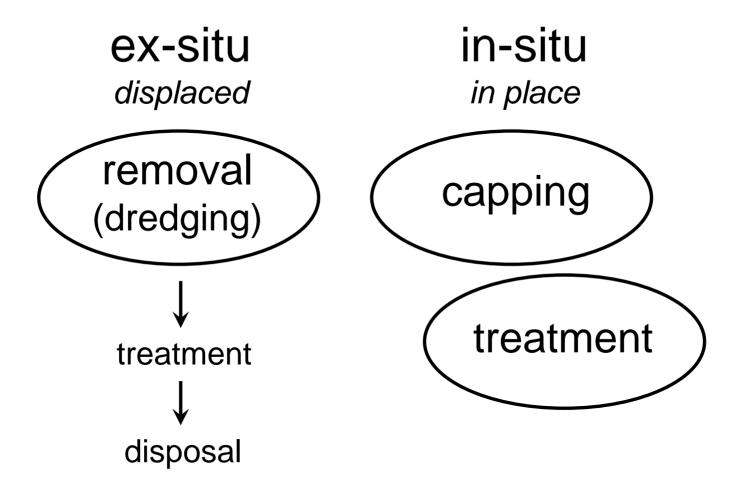
Birchenough et al., 2010

CETCC

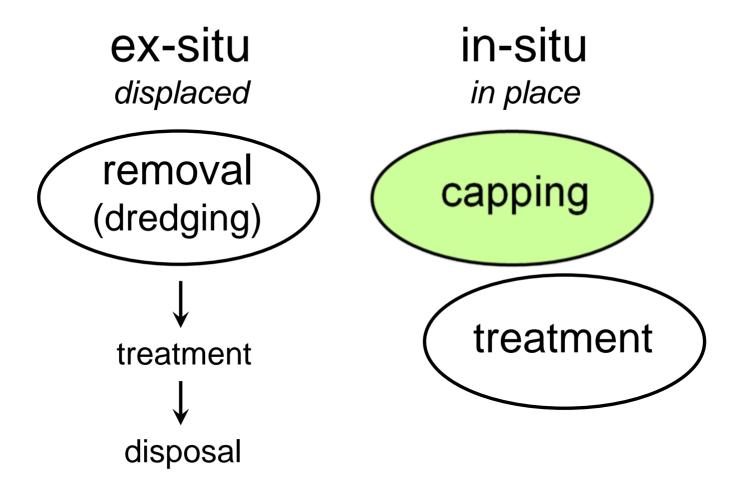
In-situ treatment

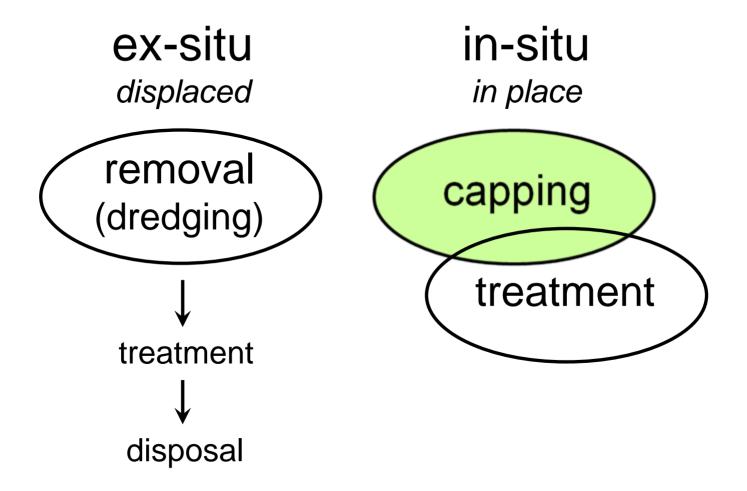
Description

Placing treatment agents into or overtop contaminated sediment to reduce COC mass, toxicity and/or bioavailability within the sediment's biological zone.


"Classic" method

Inject agents *into* sediment massMechanically mix in


Approaches to sediment remediation


9

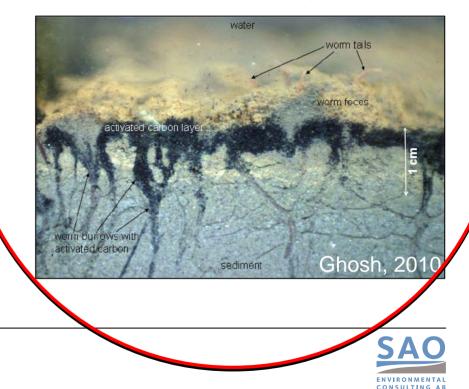
Approaches to sediment remediation ¹⁰

Approaches to sediment remediation ¹¹

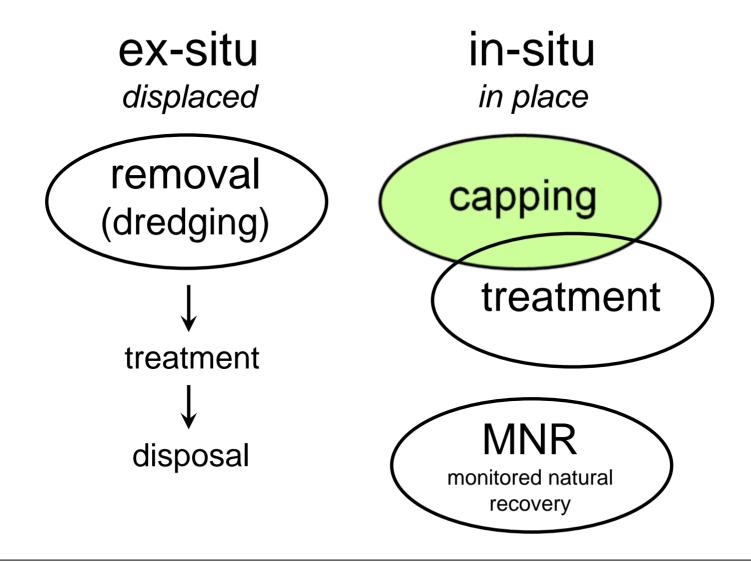
In-situ treatment

Description

Placing treatment agents into or overtop contaminated sediment to reduce COC mass, toxicity and/or bioavailability within the sediment's biological zone.


"Classic" method

Inject agents *into* sediment massMechanically mix in



"New" method

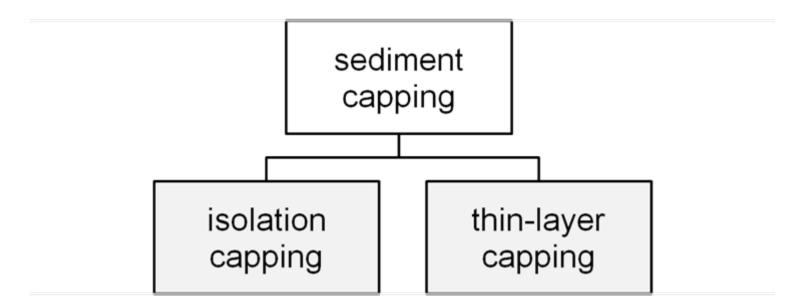
Place agents overtop sediment surface
 Natural bioturbation activity mixes in

Approaches to sediment remediation ¹³

Which remediation approach to use?

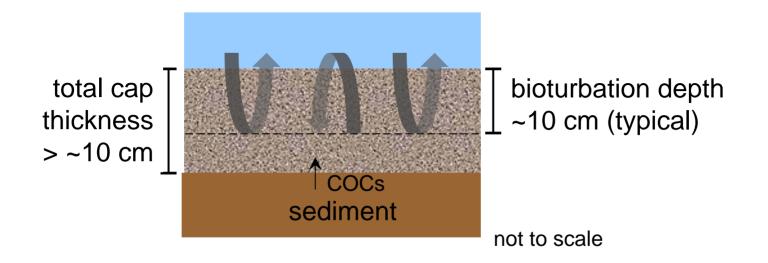
Project-/site-specific decision, depends on

- Rate and degree of risk reduction needed
- COC(s)
- Site conditions
- Sediment characteristics
- Cost
- Combination of approaches often attractive
 e.g. removal followed by capping of residuals


In-situ capping Strategy, design and materials

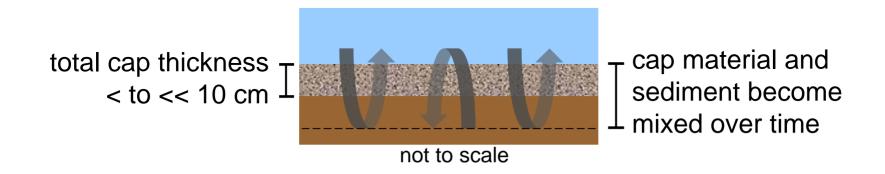
- Most appropriate strategy, design and material(s) depends on
 - Cap performance objectives
 - COC(s)
 - Site conditions
 - Sediment characteristics
 - Construction equipment/placement technique
 - Cost

Cap performance objectives


- Key factor in selecting appropriate strategy, design and materials
- Objectives differ depending on strategy

Isolation capping

Cap thickness > bioturbation depth



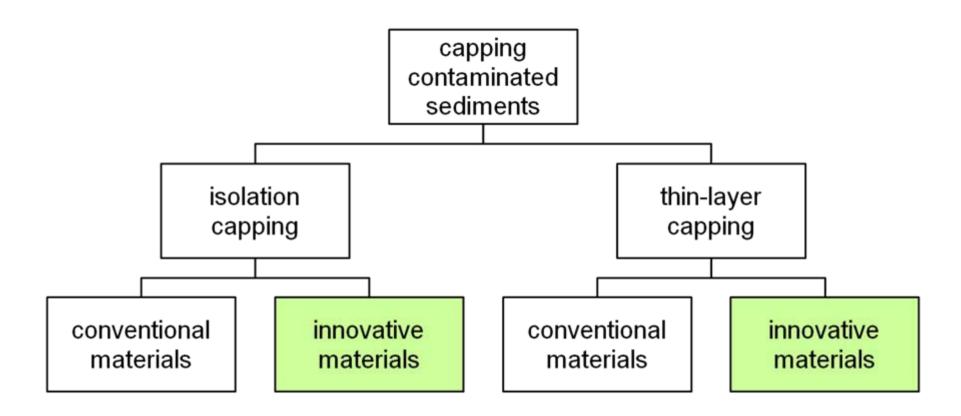
- Performance objectives: Reduce risks by
 - 1. Isolating sediments from bioturbating organisms
 - 2. Stabilizing sediments against erosional losses
 - 3. Minimizing COC migration up into bio zone

Thin-layer capping

Cap thickness < bioturbation depth</p>

- Performance objectives: Reduce risks by
 - 1. Diluting total COC concentrations in bio zone
 - 2. Lowering porewater concentrations by *dilution*
 - 3. Lowering porewater concentrations by *sorption*

TLC also considered in-situ treatment (or eMNR)


Isolation vs thin-layer capping Selecting the "best" strategy

- Factors to consider
 - Site's depositional vs erosional character
 - Degree and spatial extent of contamination
 - COC(s)
 - Rate and degree of risk reduction needed
 - Cost
- Project-/site-specific decision

Type of cap material another big factor

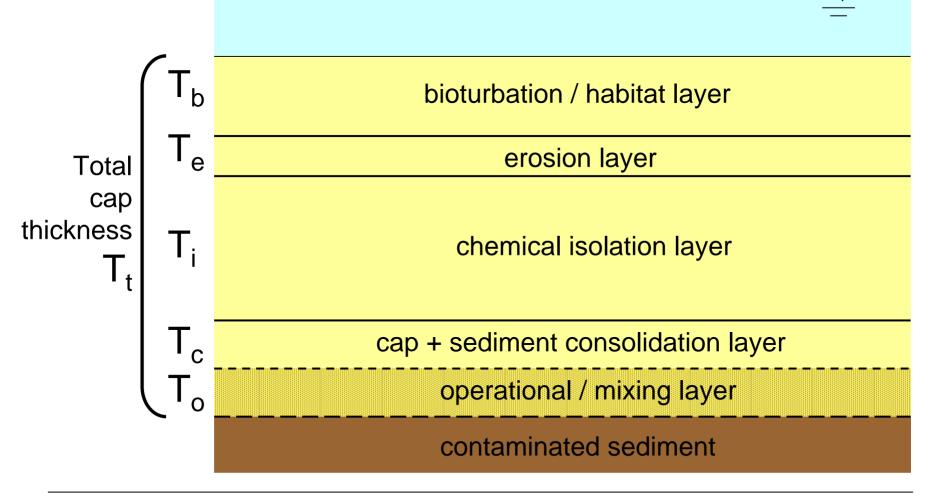
Capping strategies Expand to include the "material factor"

20

Conventional capping materialsInert, variable grain size & permeability

Coarse Sand

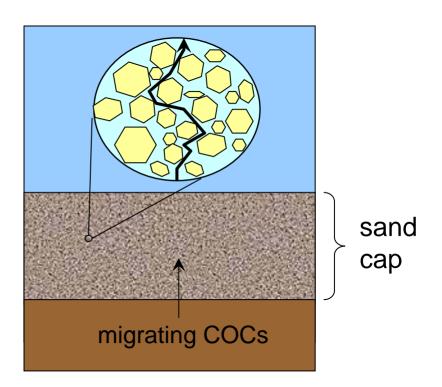
Medium Sand



LWG, 2010

21

Conventional isolation capping Design components


Vattendagarna 23-25 Oktober, 2012

22

Conventional isolation capping Use of approach

- Appropriate, adequate in many situations
- Used successfully at many sites, worldwide
- Will continue to be widely used

Conventional (isolation) capping projects^{*}, worldwide (1979-2001)

Sediment Project Great Lakes Regio Sheboygan River/Harbor Wisconsin	of Concern	Conditions	Thickness (feet)	Material	Constructed	Performance Results	Comments
Sheboygan River/Harbor							
River/Harbor							
wisconsin	1005		Composite of geotextile aggregate, geotextile, 6" cobble, with the perimeter anchored with gabions	armored stone composite	1989-1990	Undetermined cap effectiveness Some erosion of fine- grained material WDNP/EPA order cap removal in ROD	Demonstration bench-scale project. Composite ammerd cap required as ascilaments were located in high-energy river environment. Gabions placed around the comers for annohnig,
Wausau Steel Site Wisconsin	lead, zinc, mercury	Oxbow on the Big Rib River, nearshore cap	2	composite:s and over geotextile	1997	Chemical isolation failed Cap not physically stable	Methane gas trapped under the geotextile forced cap to rise in the center, pulling away geotextile from the edge. Sand erosion also occurred in the nearshore areas.
Manistique Capping Project Michigan (pilot)	PCBs		40-mii (0.1')	HDPE	1993	 Physical inspection of the temporary cap approximately 1 year after installation showed cap was physically intact and most anchors still in place, but was methane-filled 	A 240° by 100° HDPE temporary cap was anchored by 38 2-ton concrete blocks placed around the perimeter of the cap. This temporary cap was installed to prevent ension of contaminated sediments within a river hotspot with elevated surface concentrations.
Hamilton Harbor Ontario, Canada	PAHs		1.6	sand (2.5 acres) (in situ)	1995	Chemical isolation effective No erosion of cap	Cap monitoring in porewater ongoing.
Puget Sound Regi	on						
Duwamish Waterway Seattle, Washington	heavy metals, PCBs		1-3	sand (4.000 cy)	1984	Chemical isolation effective No erosion of cap	Monitoring as recent as 1998 showed cap remains effective and stable. Split-hull dump barge placed sand over relocated sediments (CAD site) in 70' water.
Sediment Project	Chemicals of Concern	Site Conditions	Design Thickness (Seet)	Cap Material	Year Constructed	Performance Results	Comments
One Tree Island Olympia, Washington	heavy metals, PAHs		4	sand	1987	Chemical isolation effective No erosion of cap	Last monitoring occurred in 1989 showed that sediment contaminants were contained.
St. Paul Waterway Tacoma, Washington	phenois, PAHs, dioxins		2-12	sand	1903	Chemical isolation effective Cap within specifications	Some redistribution of cap materials has occurred, but overall remains >1.5 m (4.9%). C. californieus found in sediments, but never >1 m (3.3%).
Pier 51 Ferry Terminal Seattle, Washington	PAHs, PCBs		1.6	oparse sand (4 acres) (in situ)	1989	Chemical isolation effective Cap within specifications Recolonization observed	As recent as 1994, cap thickness remained within design specifications. While benthic infouna have recolorized the cap, there is no indication of cap breach due to bioturbation.
Denny Way CSO Seattle, Washington	heavy metals, PAHs, PCBs	water depth 187-507	2-3	sand (3 acres)	1990	Chemical isolation effective Cap within specifications Recolonization observed	Cores taken in 1990 show that while cap surface chemistry shows signs of recontamination, there is no migration of isolated chemicals through the cap.
Piers 53–55 CSO Seattle, Washington	netals, PAHs		1.3-2.6	sand (4.6 acres) (in situ)	1992	 Chemical isolation effective Cap stable, and increased by 15 cm (0°) of new deposition 	Pre-cap infaunal communities were destroyed in the rapid burial associated with cap construction, but had recovered in the sand ouver time shifted as fine- grained material was redeposited on the cap.
Pier 64 Seattle, Washington	heavy metals, PAHs, phthalates, dibenzofuran		0.5-1.5	sand	1994	Come loss of cap thickness Reduction in surface themical concentrations	Thin-layer capping was used to enhance natural recovery and to reduce resuspension of contaminants during pile driving.
GP lagoon Bellingham, Washington (in situ)	meroury	Shallow intertidal lagoon	3	sand	2001	Chemical isolation effective at 3-months Cap successfully placed	Ongoing monitoring.
East Eagle Harbor/Wyckoff Bainbridge Island. Washington	mercury. PAHs		1-3	sand (275,000 ey)	1994	Chemical isolation effective Cap erosion in ferry lanes Some recontamination observed due to off-site sources	Cap erosion measured within first year of monitoring only in area proximal to heavily-used Washington ferry lane. Chemicals also observed in sediment traps. Ongoing monitoring.
Sediment Project Other North Americ	Chemicals of Concern	Site Conditions	Design Thickness (feet)	Cap Material	Year Constructed	Performance Results	Comments
Soda Lake, Wyoming	oil refinery residuals	soft, unconsolida ted sediments	3	sand	2000	Chemical isolation effective	Demonstration project that showed successful placement over soft sediments and isolation of PAHs and metals in refinery residuals.
International Projects							
Rotterdam Harbor Netherlands	oils	water depth5 to 12 m	2–3	silt/clay sediments	1984	No available monitoring data	As pollution of groundwater was a potential concern, the site was lined with clay prior to sediment disposal and capping.
Hiroshima Bay Japan		Waterdepth 21 m	5.3	sand	1983	No available data	

Sediment Project	Chemicals	Site	Design	Cap	Year	Performance Results	Comments
	of Concern	Conditions	Thickness (feet)	Material	Constructed		
West Eagle Harbor/Wyckoff Bainbridge Island, Washington (in situ)	mercury. PAHs	500-acre site	Thin cap 0.5' over 6 acres and thick cap 3' over 0.6 acre	sand (22,600 tons for thin cap and 7,400 tons for thick cap)	partial dredge and cap 1997	Chemical isolation effective	To date, post-verification surface sediment samples have met the cleanup criteria established for the project. Ongoing monitoring.
California and Ore	gon						
PSWH Los Angeles, California	heavy metals, PAHs	1	5	sand	1995	No data to date	Overall effective cap was >15'. This was not a function of design, but rather a function of the low contaminated-to-clean sediment volume.
Convair Lagoon San Diego, California	PCBs	5.7-acre cap in 10- acre site; water depth 10'-18'	2' of sand over 1' rock	sand over crushed rock	1998	Chemical isolation effective Cap was successfully placed Some chemicals observed in cap	Ongoing monitoring for 20 to 50 years including diver inspection, cap coring, biological monitoring.
McCormick and Baxter Portland, Oregon	heavy metals, PAHs	15 acres of nearshore sediments and soils	NA	sand	planned, but not constructed	- No data to date	Long-term monitoring, OMMP, and institutional controls were also specified.
New England/New	York						
Stamford-New Haven-N New Haven, Connecticut	metals, PAHs		1.8	sand	1978	Chemical isolation effective	Cores collected in 1990.
Stamford-New Haven-S New Haven, Connecticut	metals. PAHs		1.8	silt	1978	Chemical isolation effective	Cores collected in 1990.
New York Mud Dump Disposal Site New York	metals (from multiple harbor sources)		unknown	sand (12 million cy)	1980	Chemical isolation effective	Cores taken in 1993 (3.5 years later) showed cap integrity over relocated sediments in 80° of water.
Sediment Project	Chemicals of Concern	Site Conditions	Design Thickness (feet)	Cap Material	Year Constructed	Performance Results	Comments
Mill-Quinniapiac River Connecticut	metals, PAHs		1.6	silt	1981	Required additional cap	Cores collected in 1991.
Norwalk, Connecticut	metals. PAHs		1.6	silt	1981	No problems	Routine monitoring.
Central Long Island Sound Disposal Site (CLIS) New York	multiple harbor sources		unknown	sand	1979-1983	Some cores uniform structure with low-level chemicals Some cores chemical isolation effective Some slumping	Extensive coring study at multiple mounds showed cap stable at many locations. Poor recolonization in many areas.
Cap Site 1 Connecticut	metals, PAHs		1.6	silt	1983	Chemical isolation effective	Cores collected in 1990.
Cap Site 2 Connecticut	metals, PAHs		1.6	sand	1983	Required additional cap	Cores collected in 1990.
Experimental Mud Dam New York	metals, PAHs		3.3	sand	1983	Chemical isolation effective	Cores collected in 1990.
New Haven Harbor New Haven, Connecticut	metals, PAHs		1.6	sit	1993	Chemical isolation effective	Extensive coring study.
Port Newark/Elizabeth New York	metals, PAHs		5.3	<mark>sand</mark>	1993	Chemical isolation effective	Extensive coring study.
52 Smaller Projects New England	metals. PAHs		1.6	silt	1980-1995	Chemical isolation effective	Routine monitoring.

from Fox River ROD, 2007

When conventional capping may *not* be adequate

- COCs don't bind (partition) strongly to sediment's solid phase
- Groundwater upwelling occurring
- Partitioning processes variable or uncertain
 e.g. tributyltin (TBT)
- Non-aqueous phase liquids (NAPL) involved
- Need to manage ongoing inputs over time

Innovative capping materials

- Different from conventional
 - Physically, mineralogically and/or chemically
- Various composition, grain size, permeability
- More effective than conventional at
 - Lowering porewater COC concentrations by strong partitioning to solid phase
 - Reducing COC migration by different processes (use of low-permeability clays)
 - Binding NAPLs
 - Promoting in-situ degradation of some organic COCs in (and below) capping layer

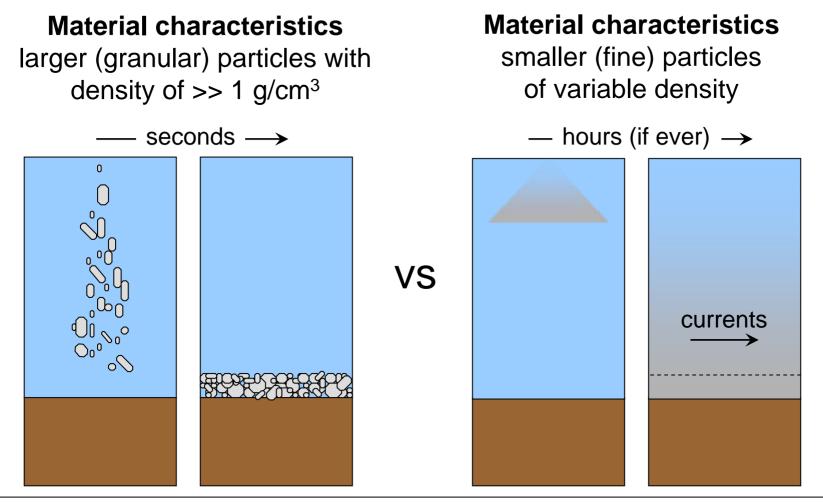
Innovative capping *materials* with proven, unique attributes

most

relatively

permeable

- Reactive (sorptive)
 - Activated carbon (AC)
 - Topsoil
 - Coke
 - Organoclay
 - Apatite
 - Zeolite
 - Bauxite
 - Fine-gr. crushed rock
 - Magnetite
 - Zero-valent metals


- Reactive (degradation)
 - Nutrients (solid, liquid)
 - ORC and HRC

Low-permeability (very fine grained)

- Phyllosilicate clays, e.g.
 - Bentonite
 - Palygorskite

Ease of placing innovative materials in their natural state

Vattendagarna 23-25 Oktober, 2012

28

Innovative capping *products incorporating* innovative materials

Higher-perm + reactive

- Reactive Core Mats®, RCMs
- Organoclay (granular)
- Bioblok Gate[™]
- P-control products

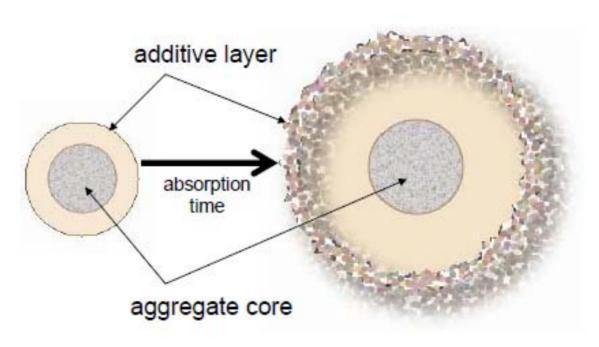
Lower-perm + inert

- Geosynthetic clay liners, GCLs
- Bentonite chips, pellets
- BioBlok®
- Clay/cement composites

Lower-perm + reactive

- BioBlok+™
- SediMite[™]

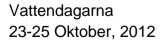
BioBlok® in Scandinavia AquaBlok® in North America


AquaBlok® or BioBlok® particles

Clay-based AquaBlok

PAC-based BioBlok

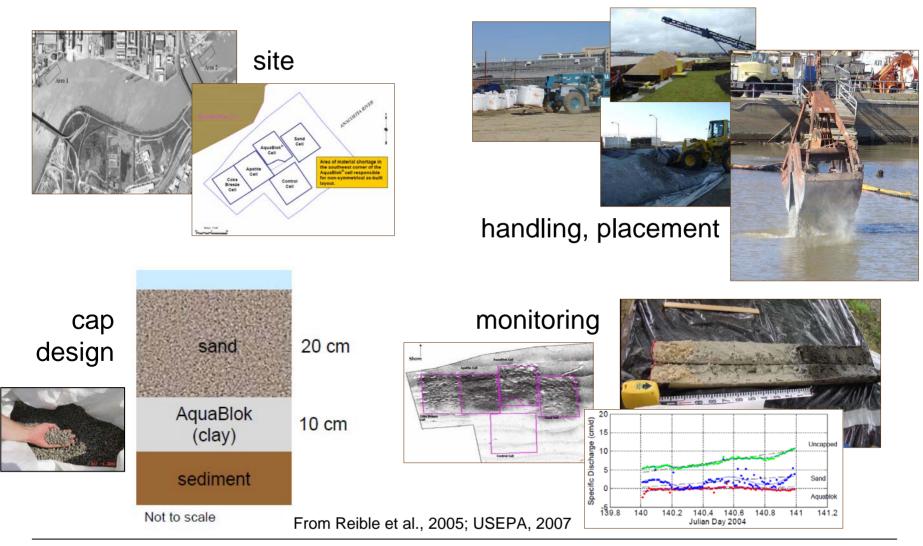
Courtesy AquaBlok, Ltd. or Biologge AS



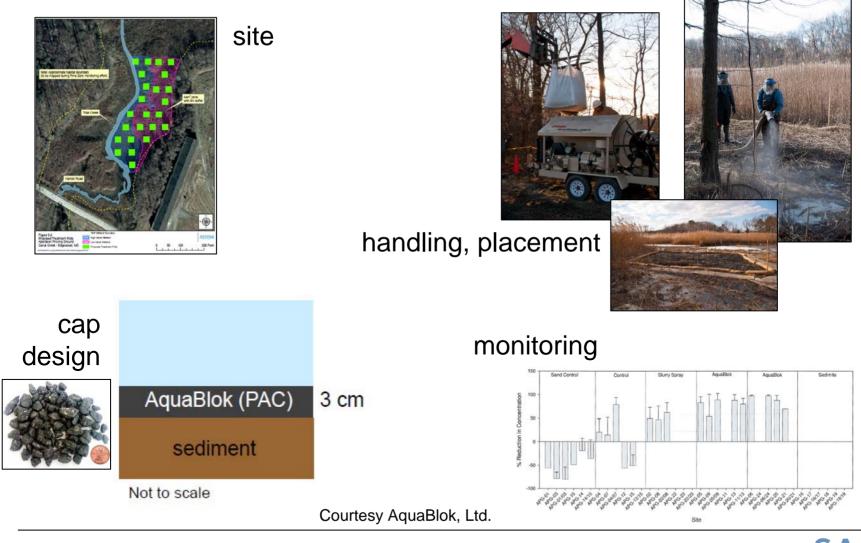
Selected innovative capping projects: USA and Norway

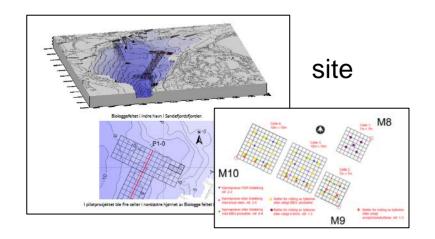
Where	What	Why	Who	When
Anacostia River Wash. DC, USA	Isolation cap - composite design - clay-based AquaBlok®	- permeability control	AquaBlok, Ltd.	2004
Aberdeen Proving Grounds, Md., USA	Thin-layer cap - monolayer design - PAC-based AquaBlok®	- bioavail. reduction	AquaBlok, Ltd.	2009
Sandefjord Harbor, Norway	- monolayer design - PAC-based BioBlok®	 chemical isolation bioavail. reduction 	Biologge AS	2010/11
Bergen Harbor (Kirkebukten), Norway	 Isolation cap mono, comp design PAC-based BioBlok® 	 chemical isolation bioavail. reduction 	Biologge AS	2011
	Isolation cap - composite design - PAC-based BioBlok®	 physical isolation bioavail. reduction 	Riologgo AS	2012
Leirvik Sveis, Norway	Thin-layer cap - monolayer design - PAC-based BioBlok®	- bioavail. reduction	Biologge AS	2012

www.aquablokinfo.com

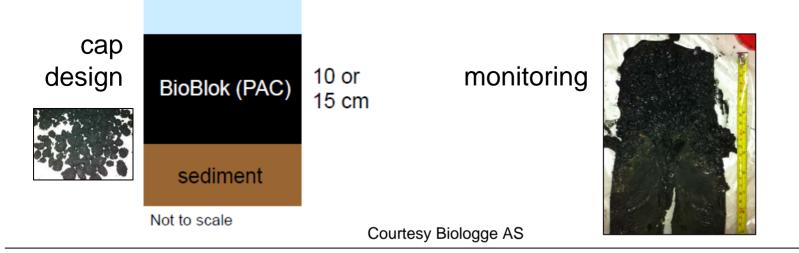

www.biologge.no

31

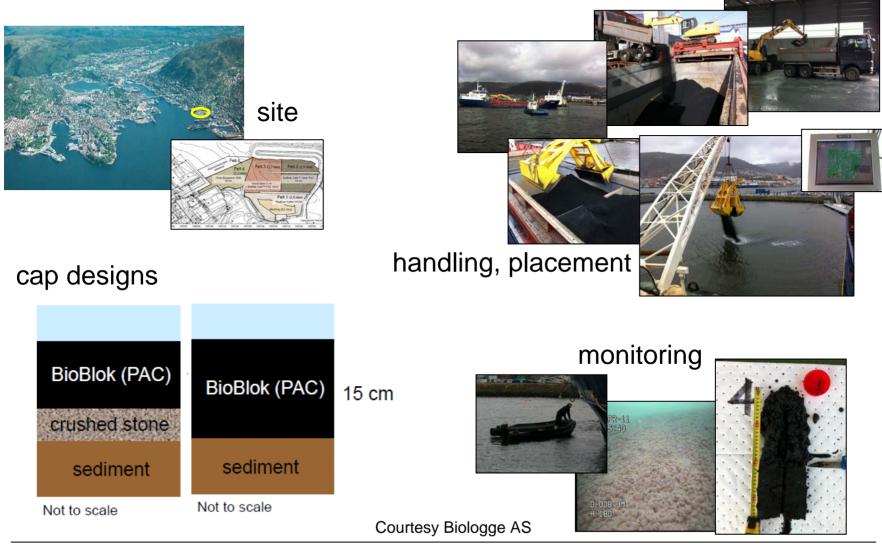

Anacostia River, Wash. DC., USA


32

Aberdeen Proving Grounds, Md., USA ³³

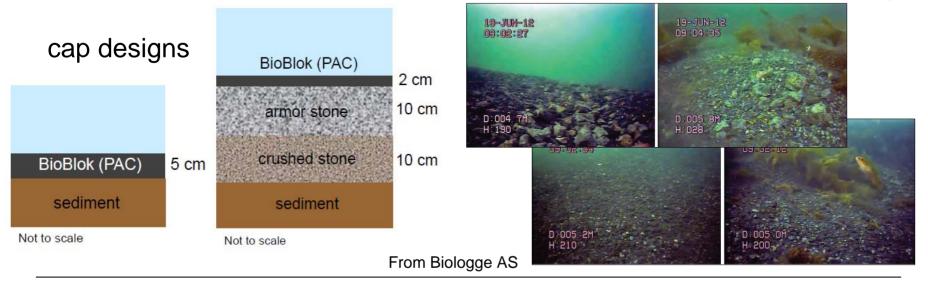


Sandefjord Harbor, Norway



handling, placement

Bergen Harbor (Kirkebukten), Norway ³⁵



Leirvik Sveis, Norway

monitoring

Estimating capping costs: Involves weighing several variables

- A = Minimum thickness of material or product X required to achieve acceptable long-term protection
- B = Material costs (delivered, offloaded)
- C = Placement costs

$Cost/m^2$ seabed = f(A, B, C)

General costs for sediment management³⁸

Qualitatively

- Remove (dredge) > in-situ cap > MNR
- Quantitatively (but very roughly!)

International

In-situ cap (SEK/m^2) MNRRemove/dredge (SEK/m^3) Conventional isolationThin-layer (reactive, PAC)MNR $(SEK/m^2/yr)$ Total: 130 - 26,000Total: 130 - 26,00015 - 25085 - 265<< 1 - 4Remove: 60 - 1,200 Treat: 30 - 10,500 Dispose: 40 - 2,30015 - 25085 - 265<< 1 - 4				
(SEK / m³) Conventional isolation Thin-layer (reactive, PAC) (SEK / m² / yr) Total: 130 – 26,000 PAC) Remove: 60 – 1,200 15 – 250 85 – 265 << 1 – 4 Treat: 30 – 10,500 15 – 250 85 – 265 << 1 – 4	Remove/dredge		MNR	
Remove: 60 – 1,200 15 – 250 85 – 265 << 1 – 4 Treat: 30 – 10,500	•		(reactive,	
	Remove: 60 – 1,200 Treat: 30 – 10,500	15 – 250	85 – 265	<< 1 – 4

Norway

iternay			
Dredge:	110 – 220		
Dispose:	170 – 790		
		135	
"Rule of thumb"	850		
dredge+dispose			

Thanks for your attention!